An Excursion into the History of Magnetic Resonance Imaging

An Offprint from

Peter A. Rinck

Magnetic Resonance in Medicine
A Critical Introduction

The Basic Textbook of the European Magnetic Resonance Forum

12th completely revised edition • 2018
335 figures, 36 tables
Foreword

"Why, sometimes I’ve believed as many as six impossible things before breakfast."
The White Queen in Lewis Caroll’s ‘Alice Through the Looking Glass’.

We like books – printed on paper, if possible with a beautiful hardcover binding. Thus, putting this standard textbook on the internet some years ago was a challenge. Now we return with a printed version of the magnetic resonance textbook, parallel with the e-version. The reasons I have described elsewhere.¹

Celebrating the 30th anniversary in 2014 was a pleasant occasion. The child had grown up, become an adult or, in our case – a rather successful standard textbook. The reviews and public reaction to the book were extremely positive.

The first version of this primer – a little booklet – was written at Paul C. Lauterbur's laboratories in the early 1980s. Lauterbur was the father of MR imaging and received the Nobel Prize twenty years later. The text was intended to be used as the Basic Textbook for EMRF, the European Magnetic Resonance Forum. After Lauterbur saw the first edition, he commented: "It looks like a fine book, especially for residents, nurses, and technicians."

Initially we thought this statement was not very encouraging, but in hindsight this was exactly what we had intended to write. We worked on it for another twenty years – and finally Lauterbur found the last edition he read before his death "gratifying". However, the target audience today includes sci-

entists and university professors. They should be able to acquire a basic knowledge which enables them to pursue studies of their own and to cope with some of the most common problems, among them tissue relaxation, image contrast and artifacts or questions concerning possible hazards to patients – and to become aware of how to perform reliable research, and to ask and be critical.

The main author and the contributors have not attempted to cover the field completely nor to be exhaustive in the topics discussed, as the field of magnetic resonance still is in a permanent stage of development and therefore changing year by year. Clinical MR machines and even equipment sold for scientific purposes have been increasingly altered into push-button black boxes with pre-fab, given and unchangeable protocols. We are not interested in certain gadgets or "apps" of commercial machines, and won't mention or describe them. We try to explain the fundamentals any user should know and understand.

As with everything in life, MR imaging does not only require knowledge of facts but also of background information and of the historical development of the field for critical decision making. Therefore we have interspersed some subjective, critical, and opinion-oriented sections – interludes – intended to offset the technical nature of the teaching sections and provide some insights into more practical questions faced by MR users.

Most of them were taken from Rinck-side (www.rinckside.org), a collection of columns published since 1990.

There has been a long list of contributors to this and earlier versions, among them Atle Bjørnerud, Patricia de Francisco, Jürgen Hennig, Richard A. Jones, Jørn Kværness, Willy Eidsaunet, Robert N. Muller, Gunvor Robertsen, Timothy E. Southon, and Geir Torheim. Their support, ideas, dedication, and feedback have added much to the quality of this work. We are also indebted to our friends who took care of some of the translations of the printed version, among them Andrea Giovagnoni for the Italian edition, Valentin Sinitsyn for the latest Russian edition, Luis Martí-Bonmatí and Ángel Alberich-Bayarri for a Spanish e-learning version; and Song Yingru for an earlier Chinese edition. The Editor-in-Charge of the current Chinese e-Learning and book editions is Qiuju Zhou.

This book was peer-reviewed by a number of competent reviewers in different fields whom I thank for their efforts.

If you want to learn something about magnetic resonance imaging or its applications choose your topic of interest. If you want to learn it from scratch start with Chapter 1; and if you want to air your brain, read the interludes that are scattered in between.

If you find any mistakes in this book, rest assured that they were left intentionally so as not to provoke the gods with something which is perfect. Still, we would be happy about your feedback. We hope that this textbook will be useful for you and that you will enjoy it. If you have comments or suggestions, please write to us.

Peter A. Rinck
January 2020
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>5</td>
</tr>
<tr>
<td>Contents</td>
<td>7</td>
</tr>
<tr>
<td>How it all began</td>
<td>11</td>
</tr>
<tr>
<td>Chapter One • Magnetism and Electricity</td>
<td>15</td>
</tr>
<tr>
<td>Introduction</td>
<td>15</td>
</tr>
<tr>
<td>Magnetism and Electricity</td>
<td>17</td>
</tr>
<tr>
<td>The Signal and its Components</td>
<td>18</td>
</tr>
<tr>
<td>Pulse, Bandwidth, and Fourier Transform</td>
<td>19</td>
</tr>
<tr>
<td>Chapter Two • Nuclear Magnetic Resonance</td>
<td>21</td>
</tr>
<tr>
<td>The Basics</td>
<td>21</td>
</tr>
<tr>
<td>Magnetic Properties of Nuclei</td>
<td>23</td>
</tr>
<tr>
<td>The Boltzmann Distribution</td>
<td>25</td>
</tr>
<tr>
<td>The Larmor Equation</td>
<td>26</td>
</tr>
<tr>
<td>Resonance</td>
<td>28</td>
</tr>
<tr>
<td>Magnetization</td>
<td>28</td>
</tr>
<tr>
<td>The Rotating Coordinate System</td>
<td>29</td>
</tr>
<tr>
<td>The MR Signal</td>
<td>31</td>
</tr>
<tr>
<td>Frequency Analysis: Fourier Transform</td>
<td>33</td>
</tr>
<tr>
<td>Chapter Three • Instrumentation</td>
<td>35</td>
</tr>
<tr>
<td>Essentials</td>
<td>35</td>
</tr>
<tr>
<td>Components of an MR Machine</td>
<td>36</td>
</tr>
<tr>
<td>Magnetic Field Strength</td>
<td>38</td>
</tr>
<tr>
<td>Magnet Types</td>
<td>39</td>
</tr>
<tr>
<td>Permanent Magnets</td>
<td>39</td>
</tr>
<tr>
<td>Electromagnets or Resistive Systems</td>
<td>40</td>
</tr>
<tr>
<td>Hybrid Magnets</td>
<td>40</td>
</tr>
<tr>
<td>Superconductive Systems</td>
<td>41</td>
</tr>
<tr>
<td>Shimming of the Magnet</td>
<td>44</td>
</tr>
<tr>
<td>Magnetic Shielding</td>
<td>44</td>
</tr>
<tr>
<td>Gradient Coils</td>
<td>45</td>
</tr>
<tr>
<td>Eddy Currents</td>
<td>46</td>
</tr>
<tr>
<td>Transmitter and Receiver</td>
<td>47</td>
</tr>
<tr>
<td>Volume Transmitter and Receiver Coils</td>
<td>48</td>
</tr>
<tr>
<td>Surface Coils</td>
<td>49</td>
</tr>
<tr>
<td>Data Acquisition System and Computer</td>
<td>50</td>
</tr>
<tr>
<td>Radiofrequency (Faraday) Shielding</td>
<td>51</td>
</tr>
<tr>
<td>The Right Choice</td>
<td>52</td>
</tr>
<tr>
<td>How to purchase an MR machine</td>
<td>55</td>
</tr>
<tr>
<td>The field-strength war</td>
<td>59</td>
</tr>
<tr>
<td>Chapter Four • Relaxation Times and Basic Pulse Sequences</td>
<td>65</td>
</tr>
<tr>
<td>T1: The Spin-Lattice Relaxation Time</td>
<td>65</td>
</tr>
<tr>
<td>T1 on the Microscopic Scale</td>
<td>70</td>
</tr>
<tr>
<td>Cross Relaxation</td>
<td>71</td>
</tr>
<tr>
<td>T1 on the Macroscopic Scale: Pulse Sequences</td>
<td>72</td>
</tr>
<tr>
<td>The Partial Saturation Pulse Sequence</td>
<td>72</td>
</tr>
<tr>
<td>The Inversion Recovery Pulse Sequence</td>
<td>74</td>
</tr>
<tr>
<td>T2: The Spin-Spin Relaxation Time</td>
<td>77</td>
</tr>
<tr>
<td>T2 on the Macroscopic Scale</td>
<td>80</td>
</tr>
<tr>
<td>The Spin Echo Sequence</td>
<td>80</td>
</tr>
<tr>
<td>Practical Measurements of T1 and T2</td>
<td>83</td>
</tr>
<tr>
<td>In vitro Determination</td>
<td>83</td>
</tr>
<tr>
<td>In vivo Determination</td>
<td>83</td>
</tr>
<tr>
<td>Measurements in Medical Diagnostics</td>
<td>87</td>
</tr>
<tr>
<td>Rapid Relaxation Constant Estimation Techniques</td>
<td>89</td>
</tr>
<tr>
<td>Critical Remarks</td>
<td>91</td>
</tr>
<tr>
<td>The forgotten pioneer</td>
<td>93</td>
</tr>
<tr>
<td>Relaxation times blues</td>
<td>97</td>
</tr>
<tr>
<td>Chapter Five • MR Spectroscopy</td>
<td>103</td>
</tr>
<tr>
<td>Chemical Shift</td>
<td>104</td>
</tr>
<tr>
<td>Phosphorus Spectroscopy</td>
<td>105</td>
</tr>
<tr>
<td>Spectroscopy of other Nuclei</td>
<td>108</td>
</tr>
<tr>
<td>Proton Spectroscopy</td>
<td>110</td>
</tr>
<tr>
<td>Carbon Spectroscopy</td>
<td>111</td>
</tr>
<tr>
<td>Fluorine Spectroscopy</td>
<td>112</td>
</tr>
<tr>
<td>Sodium and Potassium Spectroscopy</td>
<td>112</td>
</tr>
<tr>
<td>Localized in vivo Spectroscopy</td>
<td>113</td>
</tr>
<tr>
<td>Stimulated Echo Spectroscopy</td>
<td>114</td>
</tr>
<tr>
<td>Point-Resolved Spectroscopy</td>
<td>114</td>
</tr>
<tr>
<td>Image-Selected in vivo Spectroscopy</td>
<td>115</td>
</tr>
<tr>
<td>Chemical Shift Imaging</td>
<td>115</td>
</tr>
<tr>
<td>Chapter Six • Image Formation</td>
<td>117</td>
</tr>
<tr>
<td>Composition of MR Images</td>
<td>117</td>
</tr>
<tr>
<td>Localization of Spins with Field Gradients</td>
<td>118</td>
</tr>
<tr>
<td>Excitation of Selected Spins</td>
<td>120</td>
</tr>
<tr>
<td>The Spin-Echo Imaging Experiment</td>
<td>121</td>
</tr>
<tr>
<td>The Gradient-Echo Imaging Experiment</td>
<td>122</td>
</tr>
<tr>
<td>Spatial Encoding</td>
<td>124</td>
</tr>
<tr>
<td>Frequency Encoding</td>
<td>124</td>
</tr>
<tr>
<td>Phase Encoding</td>
<td>125</td>
</tr>
<tr>
<td>Two-Dimensional Imaging</td>
<td>127</td>
</tr>
<tr>
<td>Slice Selection</td>
<td>127</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Seven</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>134</td>
</tr>
<tr>
<td></td>
<td>136</td>
</tr>
<tr>
<td>Eight</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>156</td>
</tr>
<tr>
<td>Four</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>154</td>
</tr>
<tr>
<td></td>
<td>158</td>
</tr>
<tr>
<td>Four</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>168</td>
</tr>
<tr>
<td></td>
<td>169</td>
</tr>
<tr>
<td>Four</td>
<td>170</td>
</tr>
<tr>
<td>Four</td>
<td>172</td>
</tr>
<tr>
<td>Four</td>
<td>173</td>
</tr>
<tr>
<td>Four</td>
<td>174</td>
</tr>
<tr>
<td>Four</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>176</td>
</tr>
<tr>
<td></td>
<td>177</td>
</tr>
<tr>
<td>Four</td>
<td>178</td>
</tr>
<tr>
<td>Four</td>
<td>178</td>
</tr>
<tr>
<td>Four</td>
<td>184</td>
</tr>
<tr>
<td>Four</td>
<td>184</td>
</tr>
<tr>
<td>Four</td>
<td>186</td>
</tr>
<tr>
<td>Four</td>
<td>190</td>
</tr>
<tr>
<td>Four</td>
<td>191</td>
</tr>
<tr>
<td>Four</td>
<td>192</td>
</tr>
<tr>
<td>Four</td>
<td>197</td>
</tr>
<tr>
<td>Four</td>
<td>201</td>
</tr>
<tr>
<td>Four</td>
<td>201</td>
</tr>
<tr>
<td>Four</td>
<td>202</td>
</tr>
<tr>
<td>Four</td>
<td>202</td>
</tr>
<tr>
<td>Four</td>
<td>204</td>
</tr>
<tr>
<td>Four</td>
<td>205</td>
</tr>
<tr>
<td>Four</td>
<td>207</td>
</tr>
<tr>
<td>Four</td>
<td>208</td>
</tr>
<tr>
<td>Four</td>
<td>213</td>
</tr>
<tr>
<td>Four</td>
<td>213</td>
</tr>
<tr>
<td>Four</td>
<td>221</td>
</tr>
<tr>
<td>Four</td>
<td>227</td>
</tr>
<tr>
<td>Four</td>
<td>227</td>
</tr>
<tr>
<td>Four</td>
<td>229</td>
</tr>
<tr>
<td>Four</td>
<td>231</td>
</tr>
<tr>
<td>Four</td>
<td>234</td>
</tr>
<tr>
<td>Four</td>
<td>234</td>
</tr>
<tr>
<td>Four</td>
<td>237</td>
</tr>
<tr>
<td>Four</td>
<td>238</td>
</tr>
<tr>
<td>Four</td>
<td>239</td>
</tr>
<tr>
<td>Four</td>
<td>241</td>
</tr>
<tr>
<td>Four</td>
<td>243</td>
</tr>
<tr>
<td>Four</td>
<td>245</td>
</tr>
<tr>
<td>Four</td>
<td>248</td>
</tr>
<tr>
<td>Four</td>
<td>250</td>
</tr>
<tr>
<td>Four</td>
<td>252</td>
</tr>
<tr>
<td>Four</td>
<td>252</td>
</tr>
<tr>
<td>Four</td>
<td>252</td>
</tr>
<tr>
<td>Four</td>
<td>253</td>
</tr>
<tr>
<td>Four</td>
<td>254</td>
</tr>
<tr>
<td>Four</td>
<td>255</td>
</tr>
</tbody>
</table>
| Four | 263 | What is molecular in molecular imaging?
Chapter Fourteen • From Flow to Angiography and Cardiac MRI

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Some Fundamentals</td>
<td>267</td>
</tr>
<tr>
<td>Conventional Spin-Echo</td>
<td>269</td>
</tr>
<tr>
<td>Gradient Echo</td>
<td>271</td>
</tr>
<tr>
<td>Angiography</td>
<td>272</td>
</tr>
<tr>
<td>Time-of-Flight</td>
<td>273</td>
</tr>
<tr>
<td>Phase Contrast</td>
<td>275</td>
</tr>
<tr>
<td>Maximum-Intensity Projection</td>
<td>277</td>
</tr>
<tr>
<td>Reduction of Saturation Effects</td>
<td>278</td>
</tr>
<tr>
<td>Contrast-Enhanced MRA</td>
<td>279</td>
</tr>
<tr>
<td>Application</td>
<td>280</td>
</tr>
<tr>
<td>Techniques</td>
<td>282</td>
</tr>
<tr>
<td>Cardiac MR Imaging</td>
<td>284</td>
</tr>
<tr>
<td>Synchronization</td>
<td>284</td>
</tr>
<tr>
<td>Static Studies</td>
<td>286</td>
</tr>
<tr>
<td>Flow Studies</td>
<td>286</td>
</tr>
<tr>
<td>Clinical Applications</td>
<td>287</td>
</tr>
<tr>
<td>Advanced Techniques</td>
<td>288</td>
</tr>
</tbody>
</table>

Chapter Fifteen • Image Processing and Visualization

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>289</td>
</tr>
<tr>
<td>Some Fundamentals</td>
<td>292</td>
</tr>
<tr>
<td>Subtraction or Superposition Images</td>
<td>294</td>
</tr>
<tr>
<td>Quantification of MR Parameters</td>
<td>295</td>
</tr>
<tr>
<td>Image Segmentation</td>
<td>Multispectral Analysis</td>
</tr>
<tr>
<td>Three-Dimensional Visualization</td>
<td>299</td>
</tr>
</tbody>
</table>

Chapter Sixteen • Dynamic Imaging

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>303</td>
</tr>
<tr>
<td>Inherent Problems</td>
<td>305</td>
</tr>
<tr>
<td>Dynamic Image-Processing</td>
<td>306</td>
</tr>
<tr>
<td>Clinical Examples</td>
<td>311</td>
</tr>
<tr>
<td>Breast Imaging</td>
<td>311</td>
</tr>
<tr>
<td>Brain Imaging</td>
<td>313</td>
</tr>
<tr>
<td>Heart Imaging</td>
<td>315</td>
</tr>
<tr>
<td>Other Applications and Critical Remarks</td>
<td>315</td>
</tr>
</tbody>
</table>

Chapter Seventeen • Common Artifacts

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>317</td>
</tr>
<tr>
<td>Field Perturbations</td>
<td>318</td>
</tr>
<tr>
<td>Local Inhomogeneities</td>
<td>318</td>
</tr>
<tr>
<td>Susceptibility Artifacts</td>
<td>319</td>
</tr>
<tr>
<td>Radiofrequency and Gradient Artifacts</td>
<td>320</td>
</tr>
<tr>
<td>Slice Profile</td>
<td>320</td>
</tr>
<tr>
<td>Multiple Spin-Echo</td>
<td>321</td>
</tr>
<tr>
<td>Line Artifacts</td>
<td>321</td>
</tr>
<tr>
<td>Motion and Flow Artifacts</td>
<td>322</td>
</tr>
<tr>
<td>Respiratory and Cardiac Motion</td>
<td>322</td>
</tr>
<tr>
<td>Flow Artifacts</td>
<td>323</td>
</tr>
<tr>
<td>Signal Processing and Signal Mapping</td>
<td>325</td>
</tr>
<tr>
<td>Chemical-Shift</td>
<td>325</td>
</tr>
<tr>
<td>Black Boundary</td>
<td>325</td>
</tr>
<tr>
<td>Truncation</td>
<td>326</td>
</tr>
<tr>
<td>Aliasing</td>
<td>327</td>
</tr>
<tr>
<td>Quadrature Artifacts</td>
<td>329</td>
</tr>
<tr>
<td>k-Space Artifacts</td>
<td>329</td>
</tr>
<tr>
<td>The Magic Angle Effect</td>
<td>330</td>
</tr>
<tr>
<td>Summary of Artifacts</td>
<td>331</td>
</tr>
</tbody>
</table>

Chapter Eighteen • Safety

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>333</td>
</tr>
<tr>
<td>Incidental Hazards</td>
<td>335</td>
</tr>
<tr>
<td>External Objects</td>
<td>337</td>
</tr>
<tr>
<td>MR Equipment</td>
<td>338</td>
</tr>
<tr>
<td>Patient-Related Devices</td>
<td>339</td>
</tr>
<tr>
<td>Other Considerations</td>
<td>342</td>
</tr>
<tr>
<td>Physiological Hazards</td>
<td>345</td>
</tr>
<tr>
<td>Static Magnetic Fields</td>
<td>345</td>
</tr>
<tr>
<td>Varying Fields</td>
<td>350</td>
</tr>
<tr>
<td>Radiofrequency Fields</td>
<td>351</td>
</tr>
<tr>
<td>Regulations and Legal Aspects</td>
<td>353</td>
</tr>
</tbody>
</table>

Claustrophobia, MRI, and the human factor | 355
Officially supervised magnetism | 359
Commercial forces and MR safety | 363

Chapter Nineteen • Non-Medical Applications of NMR and MRI

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>367</td>
</tr>
<tr>
<td>Chemical Applications</td>
<td>368</td>
</tr>
<tr>
<td>General Remarks</td>
<td>368</td>
</tr>
<tr>
<td>Oil and Coal Analysis</td>
<td>368</td>
</tr>
<tr>
<td>Flow in Pipelines</td>
<td>368</td>
</tr>
<tr>
<td>Drilling Cores</td>
<td>369</td>
</tr>
<tr>
<td>Plastics and Polymers</td>
<td>369</td>
</tr>
<tr>
<td>Liquid Crystals</td>
<td>369</td>
</tr>
<tr>
<td>Pharmaceuticals</td>
<td>369</td>
</tr>
<tr>
<td>Cement and Concrete</td>
<td>370</td>
</tr>
<tr>
<td>Wood Pulp and Paper</td>
<td>370</td>
</tr>
<tr>
<td>Explosives</td>
<td>370</td>
</tr>
<tr>
<td>Leather and Rubber</td>
<td>370</td>
</tr>
<tr>
<td>Imaging of Solids</td>
<td>370</td>
</tr>
<tr>
<td>Biological Applications</td>
<td>371</td>
</tr>
<tr>
<td>Food</td>
<td>371</td>
</tr>
</tbody>
</table>
Agriculture, Forestry, and Environment 371 Offsprings of Magnetic Resonance Imaging 400
Proteins and Protein Engineering 372 Contrast Agents 402
Computer Applications and Pattern Recognition Techniques 373 MR Equipment 403
Non-Destructive Testing 373 Prizes and Award 405

Chapter Twenty •

A Short History of MR Imaging 375 **Abbreviations and Acronyms** 411
In the Mist of Time 375 **The Author** 417
Nuclear Magnetic Resonance 377 **Alphabetical Index** 419
Early Applications in Medicine and Biology 382
Spatial Encoding Leads to MR Imaging 388
MR Imaging Strikes Roots 391
Clinical Applications 396
Speeding up Clinical Imaging 398
An Excursion into the History of MR Imaging

In the Mist of Time

Looking back at the main protagonists involved in MR imaging is vital for an understanding of the development of the modality. This chapter is a short, incomplete, but to our knowledge authoritative introduction to the topic of MR imaging in science and biomedicine – seen from a European perspective (Euro-American, that is: Figure 20-01).

The history of the little world of nuclear magnetic resonance and magnetic resonance imaging is a mirror of the big world: one meets good, honest, and straightforward people, and bad and dishonest people; true scientists and fake scientists; one learns that patents for discoveries are filed by people who have not even done research on the topic; one sees that different people at different places can get the same or similar ideas, independent from each other. And that money makes the world go round.

The history of MR imaging has no real beginning: *Everything flows and nothing stays*, as Heraklitos pointed out – and writing about history is a permanent Work-in-Progress.

Two of the most important scientists for the development of magnetic resonance imaging were Erik Odeblad who first described the differences of relaxation times in human tissue and Paul C. Lauterbur who invented MR imaging. Others liked to belittle their accomplishments.
There are a number of personal accounts tracing the development of NMR and MRI during the last eighty years, for instance those collected by Grant, Harris and collaborators. A fine overview of magnetism and medicine was written by Manuel R. Mourino.

Tales hinting to magnetism date back to the first centuries BC, among them the writings of Lucretius and Pliny the Elder.

Pliny (23-79 AD) wrote of a hill near the river Indus that was made entirely of a stone that attracted iron (Figure 20-02). He also mentioned the magical powers of magnetite that kept haunting mankind through the centuries.

The relation between electricity and magnetism was proved by Hans Christian Oersted (Figure 20-03) in 1820 when – during a university lecture – he deflected the needle of a magnetic compass by holding a charged wire next to it, thus producing a magnetic field. His finding influenced French physicist André-Marie Ampère's and British James Clerk Maxwell's research on electricity and magnetism.

A major contributor to – not only – magnetic resonance can be found in Napoleon's realm: Jean-Baptiste-Joseph Fourier (Figure 20-04). He served three years as the secretary of the Institut d'Egypte at the beginning of the nineteenth century, and later became prefect of the Isère département in France. However, the focus of his life was mathematics, and without his Fourier transform we would have difficulties to create MR images.

469 Mourino MR. From Thales to Lauterbur, or from lodestone to MR imaging: magnetism and medicine, Radiology 1991; 180: 593-612.
In 1946, two scientists in the United States, independently of each other, described a physico-chemical phenomenon which was based upon the magnetic properties of certain nuclei in the periodic system. This was Nuclear Magnetic Resonance, for short NMR. The two scientists, Edward M. Purcell and Felix Bloch, were awarded the Nobel Prize in Physics in 1952.470, 471

Purcell (Figure 20-05) was born in Illinois in the United States of America and studied at Purdue University in Indiana. After a research year at the Karlsruhe Technical University in Germany, he worked at the Massachusetts Institute of Technology.

The discovery of nuclear magnetic resonance absorption was made just after the end of the World War II when he became Professor of Physics at Harvard. As Bloch's paper on the subject, Purcell’s was published in Physical Review in early 1946, (Figure 20-07).

Bloch (Figure 20-06) was born in Zurich and taught at the University of Leipzig until 1933; he then emigrated to the United States and was naturalized in 1939. He joined the faculty of Stanford University at Palo Alto in 1934 and became the first director of CERN in Geneva in 1962. In 1983 he died in Zurich.

Both Purcell and Bloch were protagonists for the interaction between Europe and the United States. They were not the only scientists working in the field. The 1920s had been roaring and inflationary, but also extremely fruitful in science.

In 1924, Wolfgang Pauli (1900-1958) suggested the possibility of an intrinsic nuclear spin. The year after, George Eugene Uhlenbeck (1900-1988) and Samuel A. Goudsmit (1902-1978) introduced the concept of the spinning electron.

Two years later Pauli and Charles Galton Darwin (1887-1962) developed a theoretical framework for grafting the concept of electron spin into the new quantum mechanics developed the year before by Erwin Schrödinger (1887-1961) and Werner Heisenberg (1901-1976).

Pauli, Uhlenbeck, and Goudsmit went to the United States to work.
After initial pacemaking work, in 1933, Otto Stern (Figure 20-08) – together with Walther Gerlach (Figure 20-09) – was able to measure the effect of the nuclear spin by deflection of a beam of hydrogen molecules (the so-called Stern-Gerlach effect).

Stern was awarded the Nobel Prize in Physics for 1943 "for his contribution to the development of the molecular-ray method and his discovery of the magnetic moment of the proton."

During the early 1930s, Isidor Isaac Rabi's (Figure 20-10) laboratory at Columbia University in New York became a major center for related studies.

Rabi's research was successful, but only with the visit by Cornelis Jacobus Gorter (Figure 20-11) from the Netherlands in September 1937 he was finally able to measure the nuclear magnetic moment. Gorter had tried similar experiments earlier and failed (Figure 20-12).

Several years later, Gorter was the first to use the term nuclear magnetic resonance in the publication about his failed experiments which appeared in the war-torn Netherlands in 1942, attributing the coining of the phrase to Rabi. After Gorter's visit Rabi took up his suggestions concerning the experiments, changed them, and was able to observe resonance experimentally. This led to the publication of "A New Method of Measuring Nuclear Magnetic Moment" in 1938 (Figure 20-13).

At some stage of their career, many European scientists contemplated – and still contemplate – working at academic facilities in the USA. Some stayed for good, others returned. There was hardly any movement in the other direction.

Yet, far away, in the center of the East European Plain major contributions to nuclear magnetic resonance were made.

One of the contributors was Lev Vasiljevich Shubnikov (Лев Васильевич Шубников – Figure 20-14), an experimental physicist. He studied physics at the Leningrad Polytechnical Institute, graduating in 1926.

He was then sent to the Leiden Cryogenic Laboratory in the Netherlands. At that time, Leiden Laboratory was the only laboratory in the world that had liquid helium. Shubnikov was first to observe the gradual penetration of a magnetic field in some superconductors: the hallmark of type-II superconductivity.

On his return in 1930, his experience in Leiden permitted him to head the Cryogenic Laboratory at the recently established Ukrainian Physico-Technical Institute in Kharkov.

The Laboratory had liquid hydrogen in 1931 and liquid helium in 1933 which was partly made possible by the assistance of Wander de Haas from Leiden; he provided Shubnikov with the necessary material and devices unavailable in the USSR at that time. One of the central lines of activity of the Laboratory was research of superconductivity.474 During these years Shubnikov in cooperation with Boris G. Lazarev also measured a proton magnetic moment.475

At the height of the Great Purge during the Stalin epoch, Shubnikov along with several colleagues was convicted of "crimes" and executed on 10 October 1937. In April 1957 he was posthumously rehabilitated by the Supreme Military Court.

474 Rjabinin JN, Shubnikow LW. Magnetic properties and critical currents of supra-conducting al-

Another famous contributor lived in Kazan in Tatarstan, which was part of the Soviet Union at that time and is now an independent republic within Russia.

Electron spin resonance (ESR) was discovered at Kazan's university by Yevgeni K. Zavoisky (Евгений Константинович Завойский – Figure 20-15) towards the end of the war.476

He had first attempted to detect NMR in 1941, but like Gorter he failed. Then, in January 1944, he was able to register ESR signals.

They were recorded on celluloid films and also copied by hand into the laboratory notebook (Figure 20-16a). He published his discovery first in his dissertation in 1944, then in a short paper early in 1945 (Figure 20-16b).

Early Applications in Medicine and Biology

Finding a relevant use of this new technique was difficult, and medicine and biology stayed somewhere backstage although *in vivo* NMR with a medical background has its roots in the early and mid-1950s.

In 1955 Erik Odeblad (Figure 20-17) and Gunnar Lindström from Stockholm published their first NMR studies, including relaxation time measurements of living cells and excised animal tissue.\(^{477}\)

Odeblad is the main pioneer in NMR in medicine and laid the foundations of NMR and MRI in biomedicine.

In 1952, while working at the University of California in Berkeley, Odeblad met Felix Bloch in Stanford. He asked him whether he could use Bloch's NMR spectrometer to study human samples, but the response was negative: NMR was a tool for physicists, not for research into physiology, medicine, or biology.

Odeblad returned to Sweden – and got his own machine. Around 1950 Gunnar Lindström of the Nobel Institute of Physics in Stockholm had built a spectrometer. Odeblad adapted and used it for his pioneering biomedical NMR applications, *in vivo* and *ex vivo*. In December 1954, they submitted their first NMR results (Figure 20-18a).

They had found out that different tissues had distinct relaxation times, most likely due to water content but also to different bindings to lipids – a phenomenon that explains tissue contrast in MR imaging.

Odeblad continued working on human fluids and tissues throughout the following decades and some sixty scientific papers on NMR in human tissues and secretions of mucous membranes followed between 1955 and 1968 (Figure 20-18b).\(^{478}\)

The research for this publications was performed at the Department of Obstetrics and Gynecology at the Sabbatsberg Hospi-

\(^{477}\) Odeblad E, Lindström G. Some preliminary observations on the proton magnetic resonance in biological samples. Acta Radiol (Stockholm) 1955; 43: 469-476.

SOME PRELIMINARY OBSERVATIONS ON THE PROTON MAGNETIC RESONANCE IN BIOLOGIC SAMPLES.

by Erik Odeblad and Gunnar Lindström

If a sample containing atomic nuclei with a magnetic moment is placed in a magnetic field, the nuclei take up certain allowed directions with respect to the field. Transitions between these quantized directions can be induced if electromagnetic radiation with the appropriate quantum energy acts upon the sample. In a magnetic field of about 6,700 gauss the quantum energy for proton transitions is about 9-10^-19 erg, corresponding to a frequency of about 26.5 megacycles.

If this 'resonance frequency' is applied to the specimen, and the magnetic field is swept over a small interval less than a gauss, absorption of energy can be detected by the resonance absorption technique of PURCELL.

FROM THE HÖGSTEDT LABORATORY, DEPARTMENT OF OXECOLOGY (DIRECTOR: PROF. P. WETTERDAL), SAIJFISNSJUKHUSET, KAROLINSKA INSTITUTET, AND THE NOBEL INSTITUTE OF PHYSICS (DIRECTOR: PROF. M. SEIDMARK) STOCKHOLM, SWEDEN

PROTON MAGNETIC RESONANCE OF HUMAN CERVICAL MUCUS DURING THE MENSTRUAL CYCLE

by Erik Odeblad and Ulla Bryhn

Cyclic changes in the human cervical mucus were observed as early as the middle of the 19th century and have in the last two decades been the subject of extensive investigations. Among other matters studied have been the macroscopic and general appearances (Skryt and Vimeux 1930) and the crystallization pattern (e.g. by Panikov 1945, 1946, by Rydenberg 1948, and by Zondek 1954). The amount of dry substance (Berger 1936), the viscosity (Lamar, Shettes and Delfs 1940), 'flow-elasticity' and 'Spinnfähigkeit' (Cary 1943), and the amount of reducing substance (Verschuer and Pomeranze 1949) have also been investigated. The changes in the properties of the mucus with the time of ovulation, those being of considerable practical importance, especially for timing the optimal day of conception in cases of reduced fertility. In addition, changes in the cervical mucus are of considerable interest from theoretic viewpoints. In the present study we briefly report some preliminary observations on the proton magnetic resonance spectra of the human cervical secretions in various phases of the menstrual cycle.

Principles of nuclear magnetic resonance. Proton magnetic resonance spectroscopy is specific for the hydrogen nuclei in any chemical or physical state. The resonance or absorption line occurs in the radiofrequency part of the electromagnetical spectrum when a sample containing hydrogen nuclei is placed in a magnetic field of several thousand gauss; it is due to the elementary process of absorption of a low-energy electromagnetical quantum when a proton spin flips from a lower to a higher energy orientation in the bulk magnetic field. The total ensemble of proton spins may return back to their original distribution of orientations by the process of 'spin-lattice relaxation'.

Submitted for publication 25 October 1956.

The Forgotten Pioneer

A short historical insight into Erik Odeblad’s pioneering contributions to the application of relaxation times magnetic resonance in medicine and biology.

To be read on page 93.
Soon others joined in this kind of research. Oleg Jardetzky and his collaborators performed sodium NMR studies in blood, plasma and red blood cells in 1956.479

In the late 1950s and early and mid-1960s the results of a very large amount of work on relaxation, diffusion, and chemical exchange of water in cells and tissues of all sorts appeared in the scientific literature.

T1- and T2-measurements of living frog skeletal muscle were published by Bratton in 1965.480

In 1967, Ligon reported the measurement of NMR relaxation of water in the arms of living human subjects.481

In 1968, Jackson and Langham obtained the first NMR signal ever from a whole living animal, an anesthetized rat.482

In the late 1960s, James Hutchison at the University of Aberdeen in Scotland began working with magnetic resonance on \textit{in vivo} electron spin resonance studies in mice.483

Hazlewood added to the work on NMR relaxation time measurements by studying developing muscle tissue.484

Cooke and Wien worked on similar topics.485 Hansen focussed upon NMR studies of brain tissue.486

Then, in the late 1960s and early 1970s research and dedicated science mushroomed in the field, and medical doctors without prior background in NMR science joined in the research, curious about possible biological applications of relaxation times.

One of them was Raymond Damadian at Downstate Medical Center in Brooklyn. He measured relaxation times of excised normal and cancerous rat tissue and stated that tumorous tissue had longer relaxation times than normal tissue.487 There was a lack of controls in his measurements and, as it turned out quickly, it was a fallacious assumption.

Donald P. Hollis and his colleagues from Johns Hopkins University in Baltimore repeated Damadian’s studies – on the same pulsed NMR spectrometer Damadian had used. Hollis reached conflicting, contrary results and was more cautious and critical in his scientific conclusions.

\begin{itemize}
\item Bratton CB, Hopkins AL, Weinberg JW. Nuclear magnetic resonance studies of living muscle. Science 1965; 147: 738-739.
\item Ligon TR. Coil design for low field NMR and NMR measurements on the human arm. MS thesis. Oklahoma State University. 1967.
\item Hansen JR. Pulsed NMR study of water in muscle and brain tissue. Biochim Biophys Acta 1971; 230: 482-486.
\item Damadian RV. Tumor detection by nuclear magnetic resonance. Science 1971; 171: 1151-1153.
\end{itemize}
There was no verification of Damadian’s claims that cancer pathology and their relaxation times possessed a numerical correlation.488 Yet, Damadian promoted his findings as the ultimate technology to screen for ("to scan" – but not to image) cancer and patented the idea of a hypothetical relaxation time scanner as “Apparatus and method for detecting cancer in tissue” (Figure 20-19c).489

Damadian was scientifically and medically wrong in his cancer-scanning patent and later his one-dimensional spot-by-spot spectrometric picture technique (once described as "the best advertised scientific scam of the 20th century"). However, his publicity stunts, exaggerated and colorful self-promotion, and massive advertising campaigns for his company made people curious and impacted research in NMR during the following decade.490,491

He never mentioned Odeblad’s original findings although he once admitted that he was well aware of them.

\textbf{Figure 20-19:}
As examples among others: Graphic designs of three patented though inapplicable magnetic-field-based diagnostic systems. All systems were one-dimensional and not conceived as imaging equipment.488,489

The New York Times pointed out major discrepancies between what he claimed and what he had actually accomplished, "discrepancies sufficient to make him appear a fool if not a fraud." (Figure 20-20).

Still, Damadian was, as it happens so often in the history of inventions, one of the many who prepared the ground – even if he was conclusively disproved.

In February 1973 Zenuemon Abe and his colleagues applied for a patent on a targeted NMR scanner (Figure 20-19b). They published this technique in 1974. Damadian reported a technique derived from Abe’s in a publication two years later, dubbed field-focusing NMR (Fonar).

ther Abe's nor the Fonar techniques were suitable for medical imaging.

Later, Damadian's Fonar company that manufactured MRI equipment made solely use of the MR imaging method described by Paul Lauterbur. The attribution that Damadian made the first proposal for an MR imaging device, repeated time and again, is historically not correct.

Ian Young wrote about Damadian's claims:

“As is now well known, a huge variety of pathologic processes result in increases in the relaxation time constants, while some classes of tumor have shorter time constants than the normal tissues from which they have developed. Sadly, the many attempts that were made to correlate pathology and relaxation behavior have yielded none of the precise numerical relationships that were hoped for …

“Raymond Damadian also produced a sketch of a possible NMR imaging system ... The method was, unfortunately for Damadian, one of those classic blind alleys that lead precisely nowhere.

“Donald Hollis, in his book Abusing Cancer Science: The Truth About NMR and Cancer, published in 1987, has a great deal more to say, little of it complimentary to Damadian, about the various claims he has made about both cancer diagnosis and imaging.” (Figure 20-21).496,497

Flow measurements by NMR date back as far as 1951 when the first experiment using continuous wave (CW) NMR was described by Suryan.498

By 1959, Jerome R. Singer had studied blood flow by NMR relaxation time measurements of blood in living humans.499

Such measurements were not introduced into common medical practice until the mid-1980s, although patents for similar ideas were filed earlier, for instance for an NMR machine to measure blood flow in the human body by Alexander Ganssen in early 1967.500

This machine was meant to measure the NMR signal of flowing blood at different locations of a vessel with a series of small coils, allowing to calculate the blood flow within that vessel. It could be described as an MR scanner (Figure 20-19a). However, it was no MR imaging machine.

Spatial Encoding Leads to MR Imaging

In radiology, the times of conventional imaging ended in September 1971 when the world's first axial x-ray computer assisted tomograph (CT or CAT) was installed in England. In the same month, on 2 September 1971, Paul C. Lauterbur, a professor of chemistry at the State University of New York at Stony Brook (Figure 20-22), recorded in his laboratory notebook the idea of applying magnetic field gradients in all three dimensions to create NMR images—and had his invention certified (Figure 20-23); yet, he was never able to patent it.

Already in the 1950s and 1960s Lauterbur had established his fame in the community of nuclear magnetic resonance scientists by showing carbon and silicon spectra which led to many publications on various classes of organic chemicals.501

However, all experiments before Lauterbur's invention of 1971 had been one-dimensional and lacked spatial information. Nobody could determine exactly where the NMR signal originated within the sample. Lauterbur's idea changed this.

Lauterbur called his imaging methodzeugmatography, combining the Greek words "zeugma" (ζεγμα = the bridge or the yoke that holds two animals together in front of a carriage) and "graphein" (γραφειν = to write, to depict) to describe the joining of chemical and spatial information. This term was later replaced by (N)MR imaging or MRI.

He published the first images of two tubes of water in March 1973 in Nature (Figure 20-24). Later in the year the picture of a living animal, a clam, followed and in 1974 the image of the thoracic cavity of a mouse.

Field gradients had been used before, though only in one dimension and without imaging in the mind of the researchers. They are an essential feature of the study of molecular diffusion in liquids by the spin-echo method developed by Erwin L. Hahn in 1950 (Figure 20-25); his group also used a gradient approach to create a storage memory.

In 1951, Roger Gabillard from Lille in France had imposed one-dimensional gradients on samples.

Carr and Purcell described the use of gradients in the determination of diffusion in 1954.

507 Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 1954; 94: 630-638.
Many of today's innovations were thought of and developed in Lauterbur's laboratory in the late 1970s and 1980s, from radio-frequency coil design, magnetization transfer, 3D-imaging, heart and lung imaging, using Bernardo ML, Cohen AJ, Lauterbur PC. Radiofrequency coil designs for nuclear magnetic resonance zeugmatography. IEEE Comp Soc 1982; 277-284.

Simon HE. A whole body nuclear magnetic resonance (NMR) imaging system with full three-dimensional capabilities. SPIE Applications of Optical Instrumentation in Medicine IX 1981; 273: 41-49.

and flow imaging. Some examples are shown in Figure 20-26.

Figure 20-27:
Richard Ernst.

Figure 20-28:
One of the first 2D-FT MR images from the research group of Richard Ernst in Zurich, acquired by Anil Kumar in July 1974.

MR Imaging Strikes Roots

The news of Lauterbur's invention traveled slowly although he presented it at a number of scientific meetings between 1972 and 1975.

Lauterbur once stated: "European scientists, physicians, governments and industries moved more confidently and thoughtfully into this new area than did their American counterparts." 515

Some people listened, understood, and reacted. It's a tale of international conferences. Here are some examples:

In April 1974, Lauterbur gave a talk at a conference in Raleigh, North Carolina. This conference was attended by Richard Ernst from Zurich (Figure 20-27), who realized that instead of Lauterbur's back-projection one could use switched magnetic field gradients in the time domain.

This led to the 1975 publication, 'NMR Fourier Zeugmatography' by Anil Kumar, Dieter Welti, and Richard Ernst, 516 and to the universal reconstruction method for MR imaging today (Figure 20-28).

When Lauterbur presented his approach to NMR imaging at the International Society of Magnetic Resonance (ISMAR) meeting in January 1974 in Bombay, Raymond Andrew, William S. Moore, and Waldo Hinchshaw from the University of Nottingham, England, were in the audience and took

note. As a result, Hinshaw developed his own approach to MR imaging with their *sensitive point method.*

At this time, several research groups in Nottingham worked in parallel on similar topics. The first group comprised E. Raymond Andrew, Waldo S. Hinshaw (Figure 20-29), William S. Moore, Neil Holland, and Paul Bottomley, all of them major contributors to the development of MR imaging.

The second group included Peter Mansfield (Figure 20-30), Peter K. Grannell, Andrew Maudsley, Ian Pykett, and Peter Morris. They worked on studies of solid periodic objects, such as crystals.

At a Colloque Ampère conference in Cracow, Poland, in September 1973, Mansfield was told about Lauterbur's imaging method after he and his collaborator Peter K. Grannell had presented a one-dimensional interferogram of camphor/cardboard samples (Figure 20-33).

For some time in 1974 a third, single-man research ‘team’ existed in Nottingham, consisting of Alan N. Garroway (Figure 20-31).

He applied weak radiofrequency pulses in the presence of a field gradient in order to achieve spatial selectivity. Next door, Pe-

Mansfield and his postdoctoral students were developing a related method. Garroway later joined the Mansfield group. A month before Garroway and Mansfield submitted their first imaging article to Journal of Physics in 1974519 they applied together for a first patent.

Unfortunately, their method was unsuitable for practical application because it suffered from rapid loss of signal; the problem and its solution were explained by David Hoult from Oxford.520

By 1975, Mansfield and Andrew A. Maudsley proposed a line technique which, in 1977, led to the first image of \textit{in vivo} human anatomy, a cross section through a finger. In 1978, Mansfield presented his first image through the abdomen.521

Echo-planar imaging (EPI), a real-time imaging technique, had been proposed by Mansfield's group in 1977, and the first crude images were shown by Mansfield and Ian Pykett in the same year. Roger Ordidge (Figure 20-32) presented the first EPI movie in 1981.522

The breakthrough of EPI came with manifold improvements in many aspects of

522 Mansfield P, Pykett IL, Morris PG. Human whole body line-scan imaging by NMR. Br J Radiol. 1978; 51: 921-922.

the associated methodology and instrumentation – from gradient power supply and gradient coil design to pulse sequence development, presented by Pykett and Rzedzian in 1987. However, it remains a niche technology in clinical MRI.

In 1977, Waldo Hinshaw, Paul Bottomley, and Neil Holland, succeeded with an image of the wrist. Hinshaw later went to Harvard and then joined the group at the Technicare company, at that time the most advanced scientific group with a commercial – and solid – medical applications background.

More human thoracic and abdominal images by different groups and several novel techniques followed, and by 1978, Hugh Clow and Ian R. Young, working at the British company EMI, reported the first transverse NMR image through a human head.

The group around John Mallard at the University of Aberdeen also performed trailblazing research work. James Hutchison, a physicist, Margaret A. Foster, a biologist, and later Bill Edelstein, and their colleagues built their own whole-body MR imaging machine and developed the spin-warp technique.

They published the first image through the body of a mouse in 1974 which was followed by a whole-body image in 1980 (Figure 20-34).

In the 1970s and 1980s Great Britain was a major contributor to the development of MRI equipment and software, but then a number of the researchers working in Britain went to the United States. It was a major brain-drain for British universities, but there was little money in the British university system. An excellent eyewitness report by some leading British researchers and scientists about the British work was given in the transcripts of a meeting at the Wellcome Institute for the History of Medicine, London, in 1996.

Most of the British researchers stayed abroad, whereas many of the Continental Europeans who worked in the U.S.A. in the late 1970s and early 1980s returned to Europe.

Some of the Europeans had performed quite impressive research in the United States. Among them was Robert N. Muller who, in 1982, described off-resonance imaging, a technique later dubbed *magnetization transfer imaging*; later he focused on relaxaometry and contrast agent research. Peter A. Rinck et al. described the first *in vivo* fluorine lung images (Figure 20-35a and b).\(^{530}\)

Much of the research done in the early 1980s – for instance at Paul Lauterbur’s lab – was not published, or only presented as abstracts because of the extremely rapid progress in the different research groups.

Clinical Applications

At about this time, MR imaging started being clinically evaluated. One of the most admirable research groups worked at Hammersmith Hospital in London. The head of the group was Robert E. Steiner, but Ian R. Young and Graeme M. Bydder were the moving forces. Among others, Frank H. Doyle and Jacqueline M. Pennock supplemented this group.

Because MR imaging is at the crossroads between medicine, biology and chemistry, physics, and computer science, research groups with strong interdisciplinary relationships and cross-fertilization became scientifically extremely fruitful, …

… which led to the 'odd couple' system, involving one physician and one scientist. At congresses, you would always see Ian Young (Figure 20-36) together with Graeme Bydder (Figure 20-37), a seemingly ideal combination.

There were other couples like them (e.g., Rinck and Muller, Figure 20-38), but apparently such an interdisciplinary relationship between radiologists and physicists or chemists does not fit into all European academic systems.

Figure 20-36: Graeme Bydder.

Figure 20-37: Ian Young. (1932-2019).

Figure 20-38: Peter A. Rinck and Robert N. Muller.
Early clinical imaging was extremely difficult, time-consuming, and often disappointing. Just taken as one example: spin-echo imaging, for instance, was a bigger step than many would imagine. Today it is taken for granted and mostly replaced by faster echo techniques; but it has helped MR imaging immensely to become a routine technique.

The first MR images were based upon proton-density differences, later upon differences in T1-weighting.

By 1982-1983, the Hammersmith, Wiesbaden, and Freiburg groups pointed out that long heavily T2-weighted multiecho SE sequences were better at highlighting pathology (Figure 20-39).531, 532

There were similar groups in the United States, mostly in New England and California.

\textit{In vivo MR Spectroscopy.} Actual \textit{in vivo} NMR spectroscopy took off in Oxford from 1974, with the group of Rex E. Richards and George K. Radda. Among others, David Hoult and David G. Gadian belonged to this group [more details can be found in Christie’s Transcript; see above].

Unfortunately it is beyond the scope of this short introduction to mention all workers from around the world who can claim just credit for helping to advance the field – which is not meant to belittle their contributions to MR imaging.

We mention first and foremost our own work, that of our collaborators, students and colleagues because we are most familiar with it – and can assess and judge it.

\textbf{Figure 20-39:}
Images of a recurrent brain tumor taken on a 0.14 Tesla system; TEs (a-d) between 20 and 300 ms. Long echo times in multiecho CPMG sequences were a major leap forward in the first half of the 1980s. It took some years until T2-weighted images were generally accepted, mostly because many companies claimed that long TE was neither possible nor necessary.

The images were made five years before the introduction of Gd-based contrast agents; the tumor can be delineated on image d at a TE of 300 ms. Illustration from: Rinck PA, Bydder GM, and Harms SE. Magnetic resonance imaging of the brain. Published in the first edition of this textbook in 1985.

Speeding up Clinical Imaging

In the 1980s, Continental Europe started to contribute intensively to MR imaging. Rapid imaging originated in European laboratories.

Jürgen Hennig (Figure 20-40), together with Arno Nauerth and Hartmut Friedburg, from the University of Freiburg introduced RARE (Rapid Acquisition with Relaxation Enhancement) imaging in 1986. This technique is probably better known under the commercial names of fast or turbo spin-echo. The beginning of their article summarizes the problem to be solved:

"Conventional imaging techniques used in MRI take several minutes for a multiple and/or multiecho 256×256 image. The use of these time-consuming methods causes several problems in routine clinical work. These well known problems include patient discomfort and positioning …"

At about the same time, FLASH (fast low angle shot) appeared, opening the way to similar gradient-echo sequences. FLASH had a completely different approach and, for non-scientifically reasons, was very rapidly adopted commercially.

The FLASH sequence was developed at Max Planck Institute, Göttingen, by Axel Haase (Figure 20-41), Jens Frahm (Figure 20-42), Dieter Matthaei, Wolfgang Hänicke, and Dietmar K. Merboldt.

The inclusion of Hennig's RARE into the clinical imaging protocols was slower, and Mansfield's echo-planar imaging (EPI) – for technical reasons – took even more time to find its way into clinical imaging.

Acquiring images faster and with better quality remained one of the main goals in MR research. New ideas and distinct concepts were developed, for instance k-space substitution as proposed by Richard A. Jones (Figure 20-43).

A combination of dedicated hardware and specific software led to parallel imaging which can reduce imaging time considerably. A first technique was described by Daniel K. Sodickson and Warren J. Manning but it required a particular coil configuration.

In 1999 Klaas Prüssmann (Figure 20-44) and Markus Weiger (Figure 20-45) introduced SENSE and thus offered a more general solution. Algorithms of the GRAPPA type, introduced a year later by Mark A. Griswold, work better than the SENSE type for abdominal and thoracic or for echo planar imaging.

Offsprings of MRI

The development of magnetic resonance imaging as a medical imaging technique opened the gates for several specialized imaging methods, highlighting different physical and chemical processes in the body – among them diffusion and neuronal activation. Both have become centers of attention in research.

Diffusion magnetic resonance imaging exploits the random diffusional motion of water molecules and is used in MR neuroimaging. During the recent years, additional research of numerous groups has turned this topic into one of the favorite research fields in MR imaging.

Some of the essential and fundamental work was published already in 1965 by Edward O. Stejskal (Figure 20-46) and John E. Tanner at the University of Wisconsin (cf. Chapter 11).539

Functional brain imaging (fMRI) became similarly attractive to interdisciplinary research and to groups far outside conventional science.

Several research groups targeted neuronal activation, among them John W. Belliveau (Figure 20-47) and his collaborators from Boston540 who observed the enhance-
ment of stimulated regions of the human visual cortex by following the first pass of a contrast agent through the brain.

Other groups tried to exploit the differences in the magnetic properties of blood depending on its oxygenation state. The basis for this kind of contrast was described by Pauling and Coryell in 1936: 541

"Over ninety years ago, on November 8, 1845, Michael Faraday investigated the magnetic properties of dried blood and made a note 'Must try recent fluid blood.' If he had determined the magnetic susceptibilities of arterial and venous blood, he would have found them to differ by a large amount (as much as twenty per cent for completely oxygenated and completely deoxygenated blood) ... “ (Figure 20-49).

At AT&T Bell Laboratories in New Jersey, Seiji Ogawa (Figure 20-48) and his collaborators compiled and elaborated upon these results and developed the idea of monitoring brain activity after stimulation with Blood Oxygenation Level Dependent (BOLD) contrast. 542 In the race (if there was a race) of who published the first BOLD image in an animal Ogawa came in first in 1990, Robert Turner second in 1991, 543 and third K.K. Kwong, John Belliveau and collaborators in 1992, but they came in with the first human image. 544 Kwong had successfully performed the first human experiment in May 1991, but his paper was rejected by Science.

Functional MRI using BOLD is now employed as one of the principal research techniques to map the visual, auditory and sensory regions for research in neurobiology and psychology. However, its validity is still very controversial. 545
Contrast Agents

The concept of using paramagnetic contrast agents to enhance pathologies was described by Paul C. Lauterbur, Maria Helena Mendonça-Dias and Andrew M. Rudin in 1978 (Figure 20-50). After injecting a manganese salt solution as contrast agent they imaged five dogs with myocardial infarctions and were able to highlight them.

In October 1983 Lauterbur's group published a major overview of paramagnetic contrast agents in MR imaging, explaining problems and questions involved in the development of possible contrast agents.

In the period between the publication of these two articles, scientists in academia and industry took note and started their own research in the field. Several patents were taken and influenced the further progression of a hectic race, partly shrouded in secrecy.

The former Schering company submitted a patent application for Gd-DTPA dimeglumine in July 1981 in a project involving Hanns-Joachim Weinmann (Figure 20-51) and Ulrich Speck. In 1984, Dennis H.

Magnetic Resonance Imaging Equipment

With the exception of the scientific instrument manufacturers, the medical hardware makers had no background in NMR.

Very early NMR attracted the attention of Russel and Sigurd Varian, two brothers who were involved in military technology development in World War II. The Californian company became, first and foremost, a major government contractor for highly sophisticated and classified military technologies. NMR equipment for research remained an important sideline for the next 50 years (Figure 20-52).

Other scientific manufacturers include JEOL in Japan and Bruker Spectrospin in Germany and Switzerland.

Most scientific developments connected to medical MR imaging were done on Bruker machines; even the competition used Bruker equipment inside their machines (Figure 20-53). Today Bruker is a US-American enterprise with a wide range of interests, from scientific equipment to military applications.

With few exceptions, most early magnets for MR machines were produced by Oxford Magnets. Still today many magnets stem from companies in the Oxford area, although nowadays most companies produce their own magnets.

The first hardware manufacturer to get involved in whole-body imaging was Electric and Musical Industries (EMI) in 1974. Later the company was taken over by Picker (later Marconi, today Philips).
Philips started research into MR imaging at the same time; P. Rob Locher, André Luiten (Figure 03-01b), and Piet van Dijk were seen at many scientific meetings.

M&D Aberdeen was a company originating from the research group at Aberdeen University. It sold one machine to a private center Geneva, but the company disappeared a long time ago.

Another effort was the Finnish MR equipment in the late 1970s, produced by Instrumentarium in Helsinki. Raimo E. Sepponen (Figure 20-54), together with a number of other researchers, among them the surgeon Jorma T. Sipponen, aimed at developing a method and device for detection of internal hemorrhages.

Their first clinical MR imaging machine was installed at Helsinki University Central Hospital in June 1982 operating at a field strength of 0.17 T. The second unit operated at 0.02 T, and later units operating at 0.04 T, which – at least at that time – was politico-commercially a step in the wrong direction. Nowadays, such intelligent and sophisticated approaches would be welcomed again.

Today there are numerous other companies producing MRI machines, many of them in Asia.

Prizes and Awards

Nobel Prizes. A number of Nobel Prizes were awarded for research results in NMR or neighboring disciplines. Among the recipients were:

- Otto Stern: Physics, 1943;
- Isidor I. Rabi: Physics, 1944;
- Felix Bloch and Edward M. Purcell: Physics, 1952;
- Nicolaas Bloembergen: Physics, 1981;
- Richard R. Ernst: Chemistry, 1991;

Paul C. Lauterbur received the Nobel Prize in Physiology or Medicine in 2003 for the invention of magnetic resonance imaging. Peter Mansfield shared the Nobel Prize for his further development of MRI.

The Nobel Foundation's announcement read:

"Paul Lauterbur discovered the possibility to create a two-dimensional picture by introducing gradients in the magnetic field. By analysis of the characteristics of the emitted radio waves, he could determine their origin. This made it possible to build up two-dimensional pictures of structures that could not be visualized with other methods."

"Peter Mansfield further developed the utilization of gradients in the magnetic field. He showed how the signals could be mathematically analysed, which made it possible to develop a useful imaging technique. He also showed how extremely fast imaging could be achievable. This became technically possible within medicine a decade later."

This was the first Nobel Prize in Physiology or Medicine awarded in the field.

Paul C. Lauterbur commented on this in a lecture given in Lund, Sweden, some days after the Prize Ceremony in Stockholm:

"It has been noted that the Nobel Prize for the development of MRI was awarded to a chemist and a physicist. That is not accidental. The field developed from a discipline that was first the province of physicists, two of whom share a Nobel Prize for it, and then became most prominent in its applications to chemistry, so that chemists received the next two Nobel Prizes, for novel techniques and applications. Although the needs of medical diagnosis stimulated the development of MRI, it was firmly grounded in the knowledge and instruments of physicists and chemists, as well as of those of mathematicians and engineers, all far from the knowledge and concerns of physicians, who became its greatest beneficiaries."

European Magnetic Resonance Award.

Since the mid-1980s, the European Magnetic Resonance Forum (EMRF) and The Round Table Foundation (TRTF) confer the European Magnetic Resonance Award upon those scientists without whom magnetic resonance imaging as a patient-friendly non-invasive diagnostic technology in medicine would not exist. The Award will only be given at special occasions.
To date, the recipients of the European Magnetic Resonance Award are:

- Silvio Aime
- Jacques Bittoun
- Graeme M. Bydder
- Patrick J. Cozzone
- Jens Frahm
- Klaes Golman
- John Griffiths
- Axel Haase
- Anders Hemmingsson
- Jürgen Hennig
- Werner Kaiser
- Christiane Kuhl
- Gerhard Laub
- Paul C. Lauterbur
- Denis Le Bihan
- Donald Longmore
- Peter Luijten
- John Mallard
- Peter Mansfield
- Chrit T. Moonen
- Guy Marchal
- Luis Martí-Bonmatí
- Robert N. Muller
- Stefan Neubauer
- Erik Odeblad
- Roberto Passariello
- Klaas P. Prüssmann
- Peter A. Rinck
- Raimo E. Sepponen
- Thomas Vogl
- Gustav K. von Schulthess
- Hanns-Joachim Weinmann
- Ian Young

In addition, there are numerous research prizes given by societies in the field of magnetic resonance imaging.
Peter A. Rinck is a University Professor of Radiology and Magnetic Resonance (emeritus) and has a Doctorate in History of Medicine.

After a classical school education he attended medical school in Berlin (Free University of Berlin) and served his internship and residency in radiology, nuclear medicine and radiation therapy at Charlottenburg University Hospital in Berlin.

Afterwards, until 1983, he was involved in the very early development of magnetic resonance imaging as Senior Research Associate at the State University of New York at Stony Brook where he worked in Paul C. Lauterbur's research group (Nobel Prize in Medicine 2003). The first version of this textbook was written at this time.

Subsequently Rinck worked as physician-in-charge of one of the first two German government sponsored MR machines in Wiesbaden, Germany.

Between 1987 and 1994 he was head of Europe's biggest clinical and research MR facility – at that time – at the University of Trondheim, Norway. Between 1986 and 2012 he was also Adjunct Professor at the School of Medicine and Pharmacy of the University of Mons-Hainaut in Belgium.

Since 1982 Rinck is Chairman of the European Magnetic Resonance Forum, EMRF, and since 2008 President of the Council of The Round Table Foundation, TRTF.

He is also Chairman of the Selection Committees of the the Pro Academia Prize and of the European Magnetic Resonance Award.
Visiting Professorships: The Neurological Institute of Colombia. Bogotá, Colombia (1986); Charité University Hospital, Medical Faculty of Humboldt University, Berlin, Germany (1991-1992); et al.

President of the European Society for Magnetic Resonance in Medicine and Biology, 1985-1987; president of the annual meetings 1989, 2002. Scientific consultant and expert adviser to international organizations and foundations (among them WHO, European Commission, UNIDO, the Nobel Committee). Honorary, founding, or ordinary member of numerous professional and learned societies.

Among others, awards and prizes from the Alexander von Humboldt Foundation, Max Kade Foundation, NATO, European Commission, Fonds National de la Recherche Scientifique de Belgique, the Research Council of Norway, and German Research Society (DFG).

Author and/or editor of several books – not only scientific or medical – an e-learning website, numerous papers in refereed journals and communications to international scientific meetings; and since 1990 Rinck-side (learned columns).